MATH 4030 Problem Set 4¹ Due date: Nov 5, 2019

Reading assignment: do Carmo's Section 3.2, 3.3, 4.2

Problems: (Those marked with † are optional.)

1. Calculate the mean curvature H and Gauss curvature K of the following surfaces:

$$S_1 = \{(x, y, z) \in \mathbb{R}^3 : z = x^2 + y^2\},\$$

$$S_2 = \{(x, y, z) \in \mathbb{R}^3 : z = x^2 - y^2\},\$$

with respect to the "upward" (toward positive z-axis) pointing unit normal N. Express the second fundamental form A of each surface at p = (0, 0, 0) as a diagonal matrix. What are the principal curvatures and principal directions? Sketch the surfaces near (0, 0, 0).

2. Compute the mean curvature H and Gauss curvature K of the *catenoid* given by the parametrization

$$X(u, v) = (\cosh v \cos u, \cosh v \sin u, v), \qquad (u, v) \in (0, 2\pi) \times \mathbb{R}.$$

3. Determine all the umbilic points on the ellipsoid (where a > b > c > 0 are distinct positive real numbers):

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$$

At which point(s) does the Gauss curvature K attains its maximum? What about for the mean curvature H (assuming the orientation is chosen such that H > 0)?

- 4. Let $S_1 = \{z = 0\}$ be the *xy*-plane and $S_2 = \{x^2 + y^2 = 1\}$ be the right unit cylinder. Show that the map $f: S_1 \to S_2$ defined by $f(x, y, 0) = (\cos x, \sin x, y)$ is a local isometry.
- 5. Let $f: S_1 \to S_2$ be an isometry between two compact surfaces S_1, S_2 in \mathbb{R}^3 . Show that S_1 and S_2 have the same area. (You can assume that S_2 is covered by a single parametrization except a set of measure zero.)
- 6. (†) Show that a graphical surface $S = \{z = f(x, y)\}$ is minimal (i.e. $H \equiv 0$) if and only if f satisfies the minimal surface equation:

$$(1+f_x^2)f_{yy} - 2f_xf_yf_{xy} + (1+f_y^2)f_{xx} = 0.$$

- 7. (†) Find a local isometry $f : S_1 \to S_2$ from the upper half plane $S_1 = \{z = 0, y > 0\}$ to the cone $S_2 := \{x^2 + y^2 = z^2, z > 0\}$. Calculate the mean and Gauss curvatures of S_2 .
- 8. (†) Given a surface $S \subset \mathbb{R}^3$, prove that the set of isometries $f: S \to S$ form a group under composition. This is called the *isometry group of S*. What is the isometry group of the unit sphere $\mathbb{S}^2 = \{x^2 + y^2 + z^2 = 1\}$?

¹Last revised on October 21, 2019